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Abst rac t .  A semiclassical treatment of the scattering cross section of a classically 
chaotic scattering problem is presented. In the limit of small f i  we fhd several ways 
in which images of classical fractal structures show up in the semiclassical cross 
section. First, t,he fractal arrangement of rainbow singularities emerges. Further, the 
interference terms in the semiclassical cross section show oscillations on all scales, 
whose frequency spectra approach fractal structures which are well known from the 
classical system. This holds for the cross section as a function of the scattering angle 
for fixed energy as well as for the cross section as a function of energy for fixed 
scattering angle. 

1. Introduction 

The phenomenon of chaotic classical scattering has been known for some time and was 
studied most extensively in classical models for inelastic molecular scattering [l-91. 
Chaotic scattering of'the same type has also been found in satellite encounters [lo], in 
an inclined billiard [ll], in vortex motion in hydrodynamics [12], in soliton scattering 
[13] and in elastic potential scattering [14-181. See also the review articles [19, 201 and 
references therein. 

In all these systems the final asymptote has been observed as function of the initial 
asymptote and this function displays discontinuities on a fractal subset of its domain. 
The explanation is as follows. By homoclinic and heteroclinic connections of unstable 
periodic orbits a hyperbolic invariant set A in the phase space is created. The stable 
manifolds of the infinitely many localized orbits reach out into the incoming asymp- 
totic region and cause a subset of incoming scattering trajectories with measure zero 
to  get stuck inside the pot,ential region. The other generic scattering trajectories with 
proper incoming and outgoing asymptotes are not chaotic themselves. However, they 
flow through the gaps of A and project some kind of shadow image of the chaotic set A 
into the outgoing asymptotic region. By measurements of the mapping from incoming 
to outgoing asymptotes many properties of the localized chaos can be recovered. Scat- 
tering trajectories coming close to A spend a long time inside the potential interior 
and run long distances alongside localized orbits. Accordingly, scattering chaos can 
be treated as a kind of transient chaos [21, 221. 

The phenomena just described are possible within classical dynamics only. How- 
ever, scattering experiments are an important source of information for micro systems, 
where quantum effects are essential. It is therefore important to find the quantum me- 
chanical phenomena which correspond to irregular scattering in classical mechanics. 
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So far, not much has been done for the investigation of quantum irregular scatter- 
ing. There is an investigation of the phase shift in the quantum mechanical scattering 
amplitude for a solvable model [23]. The scattering phase could be expressed by a 
Riemann C function, which represents a chaotic function. An explanation of the statis- 
tical properties of the fast fluctuations of the cross section as a function of the energy 
has been given within a semiclassical approximation [24-261. These results explain the 
behaviour which comes out of random matrix models which have been used to  describe 
the fast fluctuations in the cross section found in nuclear scattering. A semiclassical 
treatment of the resonance poles for chaotic scattering systems is presented in [27]. A 
comparison of the quantum mechanical behaviour with the classical and semiclassical 
behaviour is given for two different model systems in [25] and in [18]. 

Because the scattering cross section is the most important observable quantity in 
scattering systems, in this paper we try to find fingerprints of the classical chaos in 
the semiclassical differential cross section. For simplicity we treat the scattering of a 
mass point moving in a two-dimensional position space under the influence of a local 
potential. For most of our discussions we use the particular potential of equation (1) 
and make a few remarks on the generality of our considerations later. 

~ ( z ,  y) = exp[-(z + JZ)' - y2] + exp[-(z - I/&)' - (Y + &75)'1 
+ exp[-(z - I/&)' - (Y - m)'] (1) 

where z, y are Cartesian coordinates in position space. The system is invariant under 
rotations by f 2 ~ / 3 .  V has seven critical points: a relative minimum in the origin 
Po = (0,O) at energy E, = 0.40 ...; three saddles PSI, Psz, Ps3 at energy E,  = 0.45 ...; 
and three maxima PMll PMz, PM3 at energy E ,  = 1.005. The set of saddle points 
{Psil i = 1 , 2 , 3 }  and the set of maxima { PME1 i = 1 , 2 , 3 }  are invariant under rotations 
through +27r/3 and - 2 ~ / 3  around the origin Psl = (0 .6 . . . ,0 ) ,  PMl = (-1.4 ..., 0). 

System (1) has a remarkable property: there is an energy value E, w 0.483 such 
that for each energy value E E [EB, Eh{] the exact symbolic dynamics of the hyper- 
bolic set A can be given in closed form. System (1) has C,, symmetry and in the 
symmetry-reduced phase space there is exactly one localized orbit belonging to  A for 
each infinite binary symbolic sequence. Periodic symbolic sequencies correspond to  
periodic trajectories in phase space. So we have a complete knowledge of all local- 
ized orbits and in particular of all periodic orbits of the system (for more details, see 
[28]). Scattering trajectories running through the potential interior follow localized 
orbits for a finite time. Correspondingly, bundles of scattering trajectories can be 
labelled by finite binary symbolic sequences, according to the way in which they can 
be overshadowed by periodic orbits for a finite time. In the following we fix energy 
and incoming direction and consider the scattering angle as function of the impact 
parameter b .  The bundle of stable manifolds of A intersects the b axis on a Cantor 
set. The deflection function is singular for initial conditions on stable manifolds of A ,  
i.e. on points of this Cantor set. It is smooth in the gaps in between the points of the 
Cantor set. These gaps will therefore be called intervals of continuity. Also for this 
Cantor set and its gaps along the b axis we find a binary signature, we use the two 
symbols L (left) and R (right). The two intervals of the first generation are labelled 
by L and R. In generation N we find 2 N  intervals and label them by symbol sequences 
of length N .  To each interval of generation N there are two smaller neighbouring 
intervals of generation N + 1 .  One of them lies on the left side and one of them on 
the right side of the corresponding parent interval of generation N .  The signatures of 
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the new intervals are formed by attaching L (left) or R (right) to  the signature of the 
parent interval. In this way the int,ervals of continuity form a binary branching tree 
along the b axis. For more details and some figures, see [15]. 

In [29] the effects of the chaos on the classical differential cross section are iden- 
tified. In particular, the cross section contains an infinite number of rainbow singu- 
larities arranged in such a pattern, that their accumulation points form a fractal set 
which reflects the fractal structure of the localized chaotic set A in phase space. 

In the present paper we construct the semiclassical scattering amplitude for system 
(1) by Maslov's version of the WKB method [30] which has been cast into a practical 
form for scattering systems in [31, 321. Our results are twofold. First, we find that 
for scattering systems of an appropriate structure the WKB method works even in the 
chaotic case. This is an enormous difference to bound systems where this type of WKB 
construction is not possible for chaotic states. Second, we find properties of the cross 
section, which are not familiar from regular scattering systems and which thixefore 
indicate classical chaos. In particular, the semiclassical cross section oscillates in a 
complicated pattern (relat,ed to classical fractal structures) in some regions of energy 
and angle, where the classical cross section is without significant structure. 

In detail we proceed as follows. In section 2 we construct the classical Lagrangian 
submanifold C (p, , ,)  corresponding to the asymptotic boundary condition of fixed in- 
coming momentum p,n. Section 3 contains the construction of the semiclassical scat- 
tering amplitude and cross section. In section 4 we observe how the classical rainbow 
singularities emerge in the semiclassical cross section in the limit of small 5 .  In sec- 
tion 5 we pull images of classical fractal structures out of the interference oscillations 
of the cross section. Sect8ion G contains discussions and a few remarks as to what 
extent the results of our model syst,ems are typical for any chaotic scattering system. 

2. The Lagrangian submailifold 

The straight-line asymptotes of the system are labelled by the three quantities E ,  a ,  b .  
E is the energy; in the asymptotic region E = ( p ;  -I- p ,2 ) /2 ,  where p , , p ,  are the 
momenta conjugate to z,y,  LY is the direction of the incoming momentum, a = 
tan-'(p,/p,). b is the impact parameter, b = ( z p ,  - y p , ) / m .  The scattering angle 
0 is the difference between the directions of the outgoing and the incoming momentum. 
All angles are defined up to shifts by an integer multiple of 2 ~ .  

The first step in our procedure towards the semiclassical cross section is the con- 
struction of the classical Lagrangian submanifold C (pin) belonging to  the fixed incom- 
ing momentum pin. In position space we choose a straight line G perpendicular to pin 
and far away from the origin such that along 6 the value of V cannot be distinguished 
from zero within the computational accuracy. G is placed on that side of the origin, 
from which it will be transported towards the potential by the flow. Along G the im- 
pact parameter b is taken as coordinate. The corresponding one-dimensional line in 
the four-dimensional phase space is obtained by lifting to  the constant momentum 
value pin. Next we transport c through the phase space by the flow pt of the system. 
Thereby a two-dimensional submanifold C (pin) is created. For the arbitrary point Q 
on C we take w and t as coordinates, where w is the impact parameter with which 
the trajectory through Q has start,ed, i.e. 
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and t is the time of flight for the t*ra.jectory starting in ( b ,  0) on c to arrive at Q. The 
surface L twists and turns in phase space and grows folds and whirls. By the time 
it  has been transported through the potential interior i t  lies in an infinite number of 

7 

Figure 1. Intersection between the outgoing asymptotic plane and some branches 
of C (pi,) for pin = (-m,O). The scattering angle value 0 = 5.40 is marked by a 
broken line. 

For scattering systems we are mainly interested in the form of C in the outgoing 
asymptotic region. For a chaotic scattering system the mapping from points of G into 
the outgoing asymptotes has discont,inuities on a Cantor set along G. Each interval of 
continuity of b values in bet,ween t'lie points of the Cantor set is turned into a spiral- 
shaped whirl during the t,ransport through the potential interior by the flow. Figure 1 
shows the intersection of the t,raject,ories starting in three intervals of continuity of the 
b axis (R, LR, LL in the nota.t,ion of [15]) with the 6 / L  plane of outgoing asymptotes. 6 
is the scattering angle and L is the outgoing angular momentum; pi, = (-m, 0) has 
been chosen (this gives an energy value of E = 0.6). The other intervals of continuity 
give similar spirals all converging t,owards the same boundary line. The set of all these 
spirals defines a fracta,l pat,t,ern whose accumulation points coincide with the unstable 
manifolds of A (see [29]). 

In addition to  the infinite number of spirals there is one further isolated branch of 
C (pi,) coming from t,rajectories witli lmge values of b which pass the potential hills on 
the outside instead of running through the potential interior. The  outgoing angular 
momentum L of these trajectories is approximately L 2.5 for the angle region shown 
in figure 1. Therefore this branch is outside the frame of figure 1. 

Later we need the trajectories starting on and going to a specific outgoing 
direction 8. As an example, the line 8 = 5.4 is marked by a broken line in figure 1. 
The intersection between .L and the line 0 = 8 will be denoted by D(8). Each interval 
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3.1 

-In I 
4.0 

Transformed impact parameter 

Figure 2. The deflection function B(B) for interval R in logarithmically transformed 
coordinates according to equation (3) .  The contributions for B = 5.40 are labelled 
by capital letters. The extrema1 values are labelled by lower case letters. 

of continuity contributes a.n infinit,e number of points to D ( e )  as long as 8 is chosen 
such that the line 8 = 8 intersects the set of spirals at all. In this case D ( 8 )  is a fractal 
set as has been explained in more detail in [29]. 

The knowledge of the deflection function 8(b )  for an interval of continuity helps 
to correlate the spirals in figure 1 to values of the impact parameter. If we plot B 
as a function of b itself, then t,he behaviour near the boundaries of the interval is 
not well resolved. Therefore we prefer to use the logarithmically transformed impact 
par amet er 

B(b) = ln[(b - b M b +  - b)l/WP) (3) 

where b- and b, are the boundaries of the interval under consideration. p is the 
eigenvalue of the unstable periodic orbit oscillating on the saddle [15, 291. Figure 2 
displays B(B) for the example of interval R. Also here the line 0 = 5.4 is marked by a 
broken line. For later reference some dist*inct points in figure 2 are labelled. Relative 
extrema, leading to rainbows i n  t8he cross section, are labelled by lower case letters. 
Intersections between the curve 8 ( B )  and the line 8 = 5.4 are labelled by capital 
letters. Other intervals give very similar curves for B(B) and a corresponding set of 
distinct points [29]. 

C (pi,) is Lagrangian. Therefore a global action function S exists on C. We define 

S(w,t) = /p,dr + p,dy = / p - d q .  (4) 

The line integral is taken along a tra,jectory from ( b ,  0) to (w, t ) .  We are dealing with a 
scattering problem, where the initial point ( b ,  0) a.nd the final point (w, t )  are supposed 
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to tend to infinity in position spa.ce and we wish to split off the uninteresting radial 
motion in the asymptot,ic region. Accordingly, we define a reduced action in which 
the asymptotic parts are split off 

has a definite value for each sca.ttering trpjectory independent of the choice of the 
initial and final point along this trajectory as long as these points are both far away 
from the potential region. S gives the phase of the contribution of this trajectory to the 
semiclassical scattering ,amplitude [33]. In polar coordinates T ,  cp  and their conjugate 
momenta p ,  L we find 

S(w,  t )  = - T dp, + L dp. J J  
3. Construction of the cross section 

In the first part of this section we give a very brief description of the construction of 
the semiclassical wavefunction and scattering a,mplitude. The method is presented in 
full detail in [30-321. On C (pi,) we define a density 

with 

where p ( w , t )  is the position space point onto which (wit) projects. pin(b) is an in- 
coming density on which is supposed to be constant for our boundary conditions. 
On each open subset of L (pi,), which projects one-to-one onto the position space we 
construct the wavefunction 

where p is the Maslov index of the t<rajectory from ( b , O )  to (w,t). In our system 
it coincides with the number of caustics of C(pin)  crossed by this trajectory. In 
general C lies in many sheets over the position space and the semiclassical Sclirodinger 
wavefunction @(z,y) in configuration space is obtained by summation of x over all 
the branches of C lying over (z, y), i.e. 

J 

where (wj ) t j )  project,s Oilto (2, y) for all j .  
Along caustics C does not, project one-to-one onto the position space and the 

the density p in equation (7 )  diverges. Therefore the form of the wavefunction in 
equations (8) and (9) is not a useful semiclassical approximation. Near caustics C 
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projects one-to-one onto the momentum space and we can construct an approximation 
to  the momentum space wavefunction in terms of exp functions. Then we Fourier 
transform this non-singular momentum space wavefunction in order to obtain a non- 
singular position space wavefunction. By a smooth monotonic transformation of the 
integration variable the Fourier integral can be transformed into an appropriate normal 
form. It is the integral over a product of a slowly varying amplitude function times 
the exp function of a polynomial. If the caustic is an isolated fold of L, then we 
need a polynomial of order three and the integral gives a combination of an Airy 
function and its derivative. If the caustic is a cusp or two neighbouring folds which 
are not well separated, then we need a polynomial of order four and the integral gives 
a combination of a Pearcy function and its derivatives. More complicated caustics do 
not occur in system (1). 

The Airy and Pearcy contributions from the surroundings of caustics have to  be 
joined smoothly to the exp functions from regions far away from caustics. This is 
done by appropriate partitions of unity on L. The theory of this switching between 
position and momentum space is presented in mathematically rigorous form in [30]. 
More detailed explanations of the explicit construction of singularity-free semiclassical 
wavefunctions can be found in [31, 32, 34-36]. 

In the outgoing asymptotic region we separate the function (9) into a radial and 
an angular part. p splits ay 

and from S we add the asymptotic radial contributions gln -pin and subtract qout 'pout 
giving 3, already introduced in equation ( 5 ) .  For the signs in (5) note that qin and 
pin point in opposite directions whereas gout and pout point in the same direction. In 
the limit r + o we have -qln * p,, ,  = rInh and gout *pout = routk where k = m. So 
we can split off the same radial factor r-'j2 exp[ih(r,, + rout)] from each term in (9). 
The remaining angular factor of the wavefunction in the outgoing asymptotic region 
is just the semiclassical scattering amplitude. We obtain the well known expression 
1331 

where 

is the contribution of tra.jectory j to the classical cross section. The sum runs over 
all classical trajectories starting wit,li incoming momentum pin and going out with 
scattering angle 0. Also i n  (10) we need an uniformization close to caustics. It is 
induced by the uniformization of the wavefunction. The differential cross section is 
given by 
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For system (1) the sum in (10) converges absolutely as long as E is not too close 
t o  E,. First consider the sum over the contributions from one particular interval of 
continuity, e.g. interval R shown in figure 2. For any particular value of the angle 6' 
we group these contributions into four classes. For the example of 6' = 5.4 shown in 
figure 2 by a broken line, class 1 contains the points B, F, J ,  etc; class 2 contains C,  
G,  K,  etc; class 3 contains A, E, I ,  et8c; class 4 contains D,H,L, etc. Any class contains 
a sequence of second-next-neighbouring points running towards one boundary of the 
interval and leading to  a given value of 6'. Going from one contribution of any class to  
the next one of the same class, the weight & of the contribution decreases by a factor 
,/ji in the limit of close approach to  the boundary [29]. p ,  the larger eigenvalue of the 
saddle trajectory, is always greater tha.n 1 since the saddle trajectory is unstable. For 
E = 0.6 we find p x 107, i.e. 

where C k , !  is the classical weight, of the bth member of class 1. For the sum of all 
contributions from interval R we find an estimate by a geometrical series 

Next we have to  estimate the sum over all intervals. All intervals give similar 
sequences of contributions, the only difference being that the corresponding weights 
c j  are scaled proportional to the total length of the interval [29]. Let us group the 
intervals into various generations where the generation number is given by the length of 
the signature of the intervals introduced in [15]. There are 2N intervals of generatioil 
N and each interval of generation N has two neighbouring intervals of generation 
N + 1, whose signatures are obtained by adding either R or L to  the signature of the 
parent interval. The ratio of the length of any interval compared to  the length of its 
parent interval is always between pL- ' l2  and I v p3, where v is the eigenvalue of the 
unstable periodic ring trajectory. For E = 0.6 we find v = -83. In [28] this scaling 
behaviour is explained in detail and a plot of p and v as function of E is shown there. 
In our system we find p - 1 / 2  < I v < 1 for any E E [E,, E,]. This means, the 
weights & of the contributions of any interval to  sum (10) are decreased by a factor 
of a t  least I v compared to the corresponding weights & of the parent interval. 
Let n be an index which numbers the 2 N  intervals of generation N and let fn ,N  be 
the contribution of interval 11 of generation N to  sum (10). According to what has 
been explained above, we find 

Ifn,NI L I~I-N'slfl,ll (13) 

for any n E {1,...,2"} and any N > 1. For the total amplitude we have i,he estimate 

This sum converges, if I v I > 26 = G4 which is fulfilled for E > 0.58. Then the sum 
over all intervals can be estimated by a converging geometric series. 
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The estimates used in (13) and (14) are very rough since we have always inserted 
the greatest scaling factors which can occur a,t4 all. A more careful estimate using 
the average scaling factor inst,ead of I v ] - ' I6 indicates that we may expect to find 
absolute convergence for energies as low as 0 . 5 2 .  However, for energies close to  E,  
there is definitely no absolute convergence of the semiclassical sum (10). 

Also for most other chaotic scattering systems we expect energy intervals to exist, 
in which the semiclassical sum is not absolutely convergent. In these cases an appro- 
priate resummation has to be applied which might be constructed along the pattern 
of rearrangement of the semiclassical series mentioned in [ 2 7 ] .  

In case of absolute convergence we can set a limit of accuracy and take only a finite 
number of branches of C (pin) into account which are needed in order to  stay within 
the given limit of accuracy. In this paper we are mainly interested in demonstrating 
the method and in qualitative results. For this purpose it is sufficient to take the 
following branches of C (pin), which give the most important contributions for angle 
values around 0 = 5 n / 3  : From ea.ch of the intervals R, LR, LL, RLL we take the 
nine most important branches respectively. In addition we take the isolated branch 
from trajectories not entering the potential interior. This branch gives the strongest 
contribution of all. In the following we shall call the contribution from this outer 
branch the background. 

Of course, the correct asymptotic boundary condition for a scattering system is a 
constant density on the incoming iinpa,ct parameter line. Nevertheless, it is informative 
to know in addition t8he contmribut8ion to t8he cross section coming from one particular 
interval of continuity along t,he b axis. This corresponds to a density pin which is zero 
outside this one part,icular interval and constant inside. Therefore, besides showing the 
complete cross section conta,ining the contributions from the four intervals mentioned 
above and the ba.ckground, we present, figures of the cross section coming from one 
interval. Note: the complete cross section is not the sum of the cross sections from 
the various intervals; in addition it contains interference terms. 

2.5- 

E 
.3 

P 
3 
6 

5 1.7 Scattering angle 

Figure 3. Contribut.ion of inrerval R to the cross section for h. = 0.005 and nn = 
(-m,O) I The positions of t,he most important classical rainbows are marked by 
arrows. 
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Figure 3 gives the cross section from interval R for h. = 0.005 in the angle range 
8 E [4.7,5.8]. We took those nine branches from interval R with the highest weights to  
sum up fR(0) and plotted lfR(8)I2, Around 0 = 5.6 we see a strong contribution from 
the rainbow labelled g in figure 2.  The other ra.inbows a.t neighbouring angle values (e 
and k, etc in figure 2) give quite weak cont,ributions only and do not modify the curve 
significantly. The position of rainbow g is marked by an arrow in figure 3.  Between 
0 = 5.08 and 0 = 5.106 we see t,he strong contribution from the double rainbow 
labelled h and i in figure 2.  Also their positions are marked by arrows. For h = 0.005 
these two rainbows are not well separated and we have used a Pearcy function for 
the uniformization of their contribution to the amplitude. Around 0 = 4.9 we find a 
destructive interference between the contributions from the rainbows labelled j and f 
in figure 2. The position of rainbow j is marked by an arrow in figure 3. 

- 
5.0 

- 
5 1.1 Scattering angle 

Figure 4. Complete cross sect,ion for R = 0.005 and pin = ( - f i , O ) .  

All other intervals give qualitatively simi1a.r cross sections, only with less 

3 

weight 
according to their length on the 6 axis and with the positions of the rainbows shifted. 
For the double rainbow from the middle of the interval this shift can be appreciable 
(see also figure 10 in [29]). For the other rainbows the shift is quite small (compare 
the spirals in figure 1). Figure 4 shows the complete cross section in the angle interval 
[4.7,5.8], again for h = 0.005. It iiicludes the contributions from the intervals R,  LR, 
LL,  RLL and the background. The interference with the background causes the fast 
oscillations. An interesting property of da /d0  is the destructive interference between 
the caustic contributions near 0 = 4.9. For h = 0.005 the various caustic contribu- 
tions are not well separated along the 0 axis and we have many overlapping rainbow 
structures. This causes an effect which reminds us of the anticaustic effect (decreased 
amplitude of the wavefunction at the position of clusters of caustics) mentioned in 
[37]. The arrows in figure 4 coincide with those in figure 3. 

For comparison, figure 5 shows the corresponding classical cross section for which 
we have taken into account exactly the same branches of L that we have taken for 
the semiclassical cross section in figure 4 .  The four most important rainbows from 
interval R are labelled by lower case letters corresponding to the labels of the extrema 
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t 

0 
c 

4.7 Scattering angle 

Figure 5 .  Classical cross section for pin = (-m,O). The four most important 
rainbows coming out of interval R are labelled by lower case letters corresponding to 
the labels of t,lie deflect ion f u r d o n  in figure 2.  

of the deflection function in figure 2.  The comparison makes evident that at  h = 0.005 
the various classical rainbows are not well resolved in the semiclassical cross section. 
We have to go to smaller values of h in  order to see the classical rainbows growing 
out of the semiclassical cross section. This will be done in the next section. Close to 
the side boundaries of figures 4 and 5 ,  i.e. for a.ngle values close to 4.7 or 5.8, there 
is only a contribution from one branch of C (the background). Accordingly there are 
no interference oscillations in the semic1assica.l cross section and it coincides with the 
classical cross section. 

4. Emergence of rainbows for small h. 

The most prominent feature of chaos in the classical cross section is a fractal arrange- 
ment of rainbow singula.rit,ies. In t81iis section we investigate how the classical rainbows 
grow out of the semiclassical cross sect,ion in the limit of small h. 

In figure 6 we take the angle int,erval [4.86, 4.911, set h = and plot the 
contribution of interval R tmo t,he cross sect,ion. For t,his vdue of h the rainbow labelled 
by j in figure 2 and marked by a.17 arrow in figure 3 is clea,rly separated from the 
other rainbows of interval R ( f .  1, etc in figure 2).  The corresponding plot for the 
contribution from interval LR ( the  nest important one) is shown in figure 7 .  Also 
here the position of a classical rainbow (the one which corresponds to j for interval 
R) is marked by an arrow. Figure 8 shows the complete cross section in this angular 
interval for h = lov4.  The two arrows in  figure 8 correspond to those in figures 6 
and 7. Again the fast oscillations come from the interference with the background. In 
contrast to the situation for h = 0.005 shown in figure 4, now for h = the two 
rainbows j from int,ervals R ancl LR ca.n be separated and identified individually in 
the complete cross sectmion. 

Also the shape of the contrihut.ion of the double singularity from the middle of 
interval R cha.nges drast,ica.lly during the t,ransition from h = 0.005 to h = as 
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Scattering angle 4.86 1 
I 

Figure 6 .  Contribution of int,erval R to the cross section for A = 0.0001 and 
pin = (-a, 0 )  . The posit,ion of the most important classical rainbow is marked 
by an arrow. 

l .86 Scattering angle 

Figure 7. Contribution of interval LR to the cross section for h = 0.0001 and 
pin = ( - f i , O ) ,  The position of the most important classical rainbow is marked 
by an arrow. 

can be seen from figures 9 and 10. Figure 9 displays the contribution from interval 
R in the angle range [5.07, 5.121 for h = The rainbows h and i (marked by 
arrows) are clearly separated in this case and their contributions to the amplitude 
can be described by two Airy functions. When we decrease h further, then these two 
rainbows behave like two well separat,ed rainbows independent of each other. Figure 
10 gives the complete cross section for 6 E [5.07,5.12] and h = Also in the 
complete cross section the rainbows h and i can be identified clearly. 

For figures 11 and 12, h is decreased by a further factor of 100. Figure 11 gives 
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0. 
4.5 .86 Scattering angle 

Figure 8.  Complete cross secrion for f i  = 0.0001 and pin = ( - a , O ) .  The arrows 
coincide with those in figures 6 and 7. 

8.0 I 

I 
5.07 

~~ 

Scattering angle 
5. 

Figure 9. Cont,ribution of interval R to the cross section for f i  = 0.0001 and 
pin = ( - m , O ) .  The position of the most important classical rainbows is marked 
by arrows. 

the cross section of R in the angular interval [4.8925, 4.8941 for h = Figure 12 
shows the corresponding complete cross section. These figures show the same rainbow 
j (again marked by an ar row)  as in figures 6 and 8. In figure 12 the fast interference 
oscillations with the ba.ckground a.re not resolved. However, they are of the same 
qualitative structure as before, only compressed proportionally to the value of h. The 
envelope curve of the rainbow structure clearly reminds us of a classical rainbow at 
8 = 8, with a shape like (8 - (1R) -1 /2  on the illuminated side. 

In the limit of small h. the semiclassical cross section reproduces the classical cross 
section in the following wa.y. The semiclassical cross sect8ion contains fast interference 
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12.0- 

." 8 
B 
2 
U 

5.07 Scattering angle 

Figure 10. Complete cross section for A = 0.0001 and pin = ( - 6 , O ) .  The 
arrows coincide with those in figure 9. 

2.5' 

0. 
k.0925 Scattering angle 

4.8' 

Figure 11. and 
pin = (-m,O). The position of the most important classical rainbow is marked 
by an arrow. 

Cont,ribution of interval R to  the cross section for h = 

oscillations between the exp function contributions from the various well separated 
branches of L. The length of these oscillations along the 0 axis scales like h. In 
addition, close to  caustics there exist oscillations coming from the Airy function con- 
tributions. The  width of t,lie main peak of the Airy function is proportional to  h213 
and its height grows like h - ' I 3  in  the limit, of small h. In our sequence of figures 
this scaling behaviour in  h can be seen best in the figures showing the contributions 
from interval R only, e.g. in a comparison of rainbow j in figures 6 and 11. In this 
way sharp peaks of the cross section emerge in the limit of small h at the positions of 
the classical rainbows, which are locat,ed in a fractal arrangement. If we continue to  
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7.0 I I 

I 
4.8925 Scattering angle 4.8940 

Figure 12. Complete cross section for f i  = and pin = (-fi, 0 )  . 

decrease h , then more and more smaller rainbows emerge and become well separated 
from neighbouring rainbows. To reproduce the classical cross section, let us average 
the semiclassical cross sect,ion for a particular value of h according to  

We choose 2c ,  the length of the averaging interval, proportional to h1I2 such tha t  
in the  l i n i t  h - 0 the number of interference oscillations in the integration interval 
grows without limit. Also the width of the Airy peaks becomes small compared to  
the averaging length. When we let h tend to 0 in da/dB and in c simultaneously, then 
(da/dO) approaches the  classical cross section. 

5 .  Fractal structures in the interference oscillations 

Next we show how the semiclassical cross section contains information on classical 
fractal structures for values of E and 0 far away from all classical rainbow singularities, 
i.e. in regions where the simple semiclassical approximation by exp functions is valid. 
The  important quantity to be investigated is the local frequency spectrum of the  
interference oscillations in the cross section. 

5.1. du/dO as a fiincfioii of E for  f ired 0 

In equation (10) we look at. S as a function of the energy E ,  keep B fixed and expand 
S ( E )  up to first order i n  E around a reference value E,  

os. 
S j ( E )  = S j ( E , )  + ( E  - E,) 3 d E  + O ( ( E  - 
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where 

is the time delay of trajectory j in the potential interior. Compared to S ( E ) / h  the 
quantities c j ( E )  and ? ( E )  are slowly varying as functions of E in the  limit of small 
h and they will be rephced by their value at E,. With the  abbreviation 

the amplitude (10) becomes 

and the cross section is 

T h e  first sum in (17) is the classical cross section. The  second double sum represents 
the  quantum mechanical interference terms. Their oscillation frequencies on the  E 
axis are given by 

The  set of accumulation points of the set of Q values forms a fractal pattern. 
To visualize this, we choose 6' = 5.4  and E = 0.6 and pick out from each interval 

of continuity the two trajectories corresponding to the points B and C in figure 2 for 
interval R. We plot T, - TB for the various intervals in figure 13. The  horizontal 
axis gives the time delay difference. The  vertical axis gives the generation number of 
the intervals. In the bottom line we accumulate all time differences without sorting 
according to the generation. Some contributions are labelled with the signature of 
their interval. This plot has exactly the same structure as the fractal arrangement 
of rainbows given in figure 10 i n  [29]. Also the same analytical fit of the positions 
of the  contributions can be taken over from equation (9) in [29]. Only the constants 
p and A in this equation acquire other numerical values. This structure reflects the  
arrangement of the unstable manifolds of the hyperbolic invariant set A in the  classical 
phase space. 

In the complete cross section i n  equation (17) there are not only interference terms 
between the contributions B and c' within each interval. In addition, there are inter- 
ferences between any two terms in the semiclassical amplitude sum (10). The  set of all 
occurring differences of time delays is a very complicated fractal structure containing 
an infinite number of shifted copies of the structure shown in figure 13. We have 
therefore found a geometrical approach t,o characterize the complicated behaviour of 
da/dB(E),  somewhat complementary to the characterization by statistical properties 
given in [24-261. 

in part  
( a )  and for ti = in part  ( b ) .  The  energy interval displayed is [0.6, 0.6005] and 

Figure 14 is an  example of da /dQ(E)  for our model system, for ti = 
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Figure 13. Difference of t.he time delays TB and Tc for the intervals of generations 
1-10, In the upper frame the contributions are sorted according to the generation 
number of the intervals. h the lower frame all contributions are accumulated. 

I I 
0.6000 Energy 0.6005 0.6000 Energy 0.6005 

Figure 14. 
a = T and fixed scattering angle 0 = 5.40, for (U) h = lo-’ and ( b )  h = 

Cross section as function of the energy for fixed incoming direction 

0 = 5.4 which is far away from all classical rainbows. We have taken into account 
the 32 most important branches of C(p,,,). Near 0 = 5 .4  and E = 0.6 this leads to 
a relative error in the cross section of less than 0.04. In part (6) the fast oscillations 
are not well resolved. They are of the same qualitative structure as in part (U), only 
compressed by a factor ten. From the plot in part (6)  we get an  impression of the 
fluctuations on all scales which do /d#(E)  shows in the limit of small h. 

If the function da/df?(E) is given inside an appropriate interval of values of E, 
then we can apply a local Fourier transformation to  this function in order to recover 
an  approximate picture of the distribution of time delays. For the resolution of this 
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procedure we can find est,iniates wliich are complete analogues to the ones given in 
[38] for the case of da/d8 a.s function of 8. 

5.2. da/d8 as f und ion  of 8 for f i zed  E .  

We expand S(8) up to first order in 8 around some reference point 8,: 

where L j  = aSj/a8 is the out<going a,ngular momentum of trajectory j .  With the 
abbreviation 

pj = --8,Lj/h + Sj (S , ) /h  - 7rPj/2 

we obtain 

The frequencies in  (20) a.re just tlhe points of D ( 8 )  which form a fractal set as we have 
seen in section 2 .  Therefore a.lso t,he frequencies of the oscillations of the interference 
terms in the cross section 

form a fractal set. From a knowledge of the oscillation frequencies of the cross section 
the classical set D(8,) and finally C (p , , , )  in the asymptotic region can be reconstructed 
approximately. For more details on this possibility, some figures and a discussion of 
the limits of resolution, see [38]. 

6. Final remarks and conclusions 

We have applied the WI<B-Maslov method to a chaotic scattering system. This is 
possible because the semiclassical sum (10) converges absolutely in our case, despite of 
the infinite number of branches of C (pi,,). A necessary condition for this convergence 
is the fact that in a scattering system most trajectories go off to infinity after a finite 
time and the number of hjector ies  which sta.y inside the potential interior longer 
than a given time T decreases exponentially with T .  This is in sharp contrast to 
bound systems where most, trajectories come back again and again giving an infinite 
number of contributions t,o t.he seniiclassical sum. Therefore the W K B - M ~ O V  method 
cannot be applied straight forewa.rdly to a chaotic bound system. For bound systems 
an appropriate method of resumma.tion has to be established first. 

For our numerical enmples  we have considered the angle region around 8 = 5n/3 
only. In the other two angle regions around 8 = K and 8 = a/3, which are reached 
by trajectories leaving the pot,ential int,erior through the other two saddles, the same 
structures of the cross section cat] he foiund. For other incoming directions nothing 
changes dramatica.lly as long as  t’here are tra,jectories entering the potential interior 
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at all, i.e. as long as the stable manifolds of '4 a,re intersected by the initial conditions 
pi, = fixed, b arbitrary (cf figure (3 i n  [15]). 

For other values of E we see similar structures as long as E stays smaller than the 
maximal potential energy E , ,  % 1.005 and as long as E does not come too close to 
the saddle energy E, 0.459 where t,he semiclassical sum (10) is no longer absolutely 
convergent. 

The most import,ant. intent,ion of our work was to find some fingerprints of classical 
chaos in the semiclassical scat,tering cross section. The main results in this respect 
are the following. The scatt,ering a,niplit,ude has fractal clusters of rainbows and shows 
oscillations on all scales in  the limit, of small h, . This is consistent with the predictions 
of the same properties for semic1assica.l chaotic wavefunctions given in [39]. We look 
at  the system in the asymptotic range, where the radial degree of freedom is unin- 
teresting and has been separated off. Therefore only one essential degree of freedom, 
the angle, remains. If we look at, our construction from a more abstract point of 
view, we can chara.ct,erize it like t,liis. Given is a two-dimensional pha.se space with 
canonical coordinates 0 and L a.nd i n  it,  t,he Lagrangian submanifold L ,  given by the 
spirals shown in figure 1. Along C t,he action function S and the Maslov index ,U 

are given. We construct the wavefunction f (  0) for this Lagrangian submanifold ac- 
cording to  the rules of Maslov. Of course, a structure like L(pi,) shown in figure 1 
could never be the Lagrangia.11 submanifold for a.n autonomous system with one de- 
gree of freedom and a smooth Hamilt,onia.n function. In those systems the invariant 
Lagrangian submanifolds-which a.re the curves H = constant-are homeomorphic 
to lines and/or circles but, never to a fra.cta1 arrangement of spirals. However, in 
non-autonomous systems the Lagrangian submanifolds can grow infinite whirls and 
clusters of caustics, which come close to our spirals (see figures in [39]). Accordingly, 
in our scattering amplitude, whicli is constructed like a. one-dimensional wavefunction 
to a non-autonomous systlem, we see phenomena. of the type which have been observed 
in wavefunctions of one-tlimensional non-autonomous systems. 

By a careful study of t.lie caiistic positions and of the frequency spectra of the 
interference oscilhtions we ca.n recover cla,ssica.l fractal sets out of the quantum cross 
section in the limit of small h . Beca.use h. = 0 is a.n essential singularity of quantum 
mechanics, we ca.nnot take t.he value h = 0 itself in an investigation of semiclassical 
quantities. We can only go to smaller and smaller values of h and see the images of 
classical fractal structures i n  quant,um systems being resolved better and better on 
more and more levels of the infinit.e hierarchy of levels. But, it is not possible to have 
the classical fractals resolved 011 all infinite levels simultaneously. 

System (1) is t.ypica1 for chaot,ic scattering syst.ems. Also in other chaotic scatter- 
ing systems the topologica,l chaos i n  phase spa.ce is mused by homoclinic and hetero- 
clinic connections of unsta.ble periodic bra.jectories running back and forth on saddles. 
Thereby a localized hyperbolic set. is creat8ed; it8s sta,ble and unstable manifolds reach 
out into the asymptotic regions mt l  influence t,he scattering dynamics. The boundaries 
of the intervals of continuit,y on the impact parameter line are formed by the intersec- 
tions of the stable manifolds of the saddle orbit. The ima.ge of the impact parameter 
line, which is created by the t,ransport, of the tra.jectories into the outgoing asymptotic 
6/15 plane, again consist,s of an infinit8e a.rrangement of whirled lines. Their accumu- 
lation points coincide with the unstable manifolds of the localized chaotic set. The 
scales of the fractal sets are essentially given by the eigenvalues of the most important 
(shortest) unsta.ble periodic orbits. Thereby they a.re energy dependent. So far, in any 
more general chaotic scattering system everything goes as in our model system. The 



3748 C Jung n i i d  S Poi1 

difference is, t ha t  in general systems we do not know a complete and exact symbolic 
organization for the occu~r ing  fractal sets. Without a symbolic dynamics it is hard 
to sum up the semiclassical series in  a systematic way and to give estimates on the 
accuracy obtained with a truncated sum. Except for these more technical problems we 
expect, tha t  our results and conclusions are typical for any chaotic potential scattering 
system. 
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